Extracellular activation of arginase-1 decreases enterocyte inducible nitric oxide synthase activity during systemic inflammation.
نویسندگان
چکیده
Liver dysfunction secondary to severe inflammation is associated with the release of enzymes normally sequestered within hepatocytes. The purpose of these studies was to test the hypothesis that these enzymes are released, at least in part, to modulate potentially deleterious inflammatory processes in distant tissues like the gut. Human Caco-2(BBe) enterocyte-like cells were exposed to cytomix (IFN-gamma, TNF-alpha, and IL-1beta) in the absence or presence of human liver cytosol (LC). Nitric oxide (NO(*)) and inducible nitric oxide synthase (iNOS) protein production were measured by the Griess assay and Western analysis, respectively. Cytomix induced the expression of iNOS and release of NO(*). LC protein (400 microg/ml) added to the basal compartment but not apical compartment completely blocked the release of NO(*) but only slightly decreased the magnitude of iNOS protein induction. Ultrafiltration and ultracentrifugation studies demonstrated that microsome-associated arginase-1 activity was the iNOS-suppressing activity in LC. Liver arginase required activation by a <10-kDa factor that was present in supernatants of cytomix-stimulated cells. The selective iNOS inhibitor l-N(6)-(1-iminoethyl)-lysine.2HCl prevented production of this factor. The biotin switch assay detected increased S-nitrosylation of arginase-1 after incubation with supernatants from immunostimulated Caco-2 cells. Serum from endotoxemic mice contained significantly greater arginase activity compared with serum from control mice. Furthermore, the ratio of mucosal monomeric to dimeric iNOS increased in endotoxemic mice compared with controls. Thus reciprocal activation of arginase-1 and modulation of mucosal iNOS activity may be protective because it would be expected to decrease NO(*)-dependent intestinal barrier dysfunction on that basis.
منابع مشابه
Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملArginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملComparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats
Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 297 4 شماره
صفحات -
تاریخ انتشار 2009